TABLE 2. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH BORE MULTI-RING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, $n \ge 2$, α_r = 0.5, α_m = -0.5(a)

	Stresses at Bore of Liner(b)									
	Residual Stresses at RT			Prestresses at Temperature			Operating Stress at Pressure and Temperature			
	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	s/o _l	$\sigma_{\mathbf{r}}/\sigma_{1}$	$\sigma_{\theta}/\sigma_{1}$	s/o ₁	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	s/σ_1	
RT Design	0	-1.000	-0.5000	0	-1.0000	-0.5000	-0.9727	0	0.4863	
500 F Design	0	-1.1230	-0.5615	0	-1,0000	-0.5000	-0.9727	0	0.4863	
1000 F Design	0	-1.2998	-0.6499	0	-1.0000	-0.5000	-0.9727	0	0.4863	
		Dimension	nless Interfe	rence Requ	ired as Man	ufactured (c)				
		Between Cylinde 1 and 2 for $p = 300,000 p$ $E\Delta_1/r_1p$			Between Outer Cylinders n and $n + 1$ $E\Delta_n/r_np$					
RT Design		0.358			0.343					
500 F Design		0.454			0.343					
1000 F Design	0.533			0.343						

⁽a) The k_n , K, α_r , and α_m are defined by Equations (3), (4), and (13a, b), respectively. Material data are given in Table 1. The liner is 18% Ni steel and the outer cylinders are H-11 steel.

⁽b) σ_r is the radial stress, σ_{θ} the hoop stress, S the shear stress (S = $(\sigma_{\theta} - \sigma_r)/2$), and σ_1 is the design strength – less than or equal to the ultimate tensile strength of the liner.

⁽c) E is the modulus of elasticity of the outer cylinders. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

⁽d) $E\Delta_1/r_1p$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required, $(p = 0.9727 \sigma_1)$.

500 F Design

1000 F Design

TABLE 3. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH BORE MULTI-RING CONTAINER WITH K = 8.5, N = 5, k_1 = 2.0, k_n = 1.44, $n \ge 2$, α_r = 0.5, α_m = -0.3(a)

	Stresses at Bore of Liner(b)									
	Residual Stresses at RT			Prestresses at Temperature			Operating Stress at Pressure and Temperature			
	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	s/o ₁	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	s/o ₁	$\sigma_{\mathbf{r}}/\sigma_{\mathbf{l}}$	$\sigma_{\theta}/\sigma_{1}$	S/o ₁	
RT Design	0	-0.8000	-0.4000	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
500 F Design	0	-0.9054	-0.4527	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
1000 F Design	0	-1.0505	-0.5253	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863	
		Dimensio								
		Between Cylinder 1 and 2 for p = 300,000 ps $E\Delta_1/r_1p$			Outer Cylinders					
1000 1 1 1				, siv. ',	$E\Delta_n/r_n$	р				
RT Design		0.217			0.304					

0.304

0.304

(a) The k_n , K, α_r , and α_m are defined by Equations (3), (4), and (10a, b), respectively. Material data are given in Table 1. The liner is 18% Ni Steel and the outer cylinders are H-11 steel.

(b) σ_r is the radial stress, σ_θ the hoop stress, S the shear stress (S = $(\sigma_\theta - \sigma_r)/2$), and σ_1 is the design strength – less than or equal to the ultimate tensile strength

(c) E is the modulus of elasticity of the outer cylinder. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

(d) $E\Delta_1/r_1p$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required (p = 0.9727 σ_1).

0.309

0.383